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Figure 1: We present a deep learning based approach to estimate personalized body shape, including hair and clothing, using a single
RGB camera. The shapes shown above have been calculated using only 8 input images, and re-posed using SMPL.

Abstract

We present Octopus, a learning-based model to infer the
personalized 3D shape of people from a few frames (1-8)
of a monocular video in which the person is moving with
a reconstruction accuracy of 4 to 5mm, while being orders
of magnitude faster than previous methods. From semantic
segmentation images, our Octopus model reconstructs a 3D
shape, including the parameters of SMPL plus clothing and
hair in 10 seconds or less. The model achieves fast and ac-
curate predictions based on two key design choices. First,
by predicting shape in a canonical T-pose space, the net-
work learns to encode the images of the person into pose-
invariant latent codes, where the information is fused. Sec-
ond, based on the observation that feed-forward predictions
are fast but do not always align with the input images, we
predict using both, bottom-up and top-down streams (one
per view) allowing information to flow in both directions.
Learning relies only on synthetic 3D data. Once learned,
Octopus can take a variable number of frames as input, and
is able to reconstruct shapes even from a single image with
an accuracy of 5mm. Results on 3 different datasets demon-
strate the efficacy and accuracy of our approach. Code is
available at [2].

* Work partly conducted during an internship at the Real Virtual Hu-
mans group of Max Planck for Informatics.

1. Introduction

The automatic acquisition of detailed 3D human shape
and appearance, including clothing and facial details is re-
quired for many applications such as VR/AR, gaming, vir-
tual try-on, and cinematography.

A common way to acquire such models is with a scan-
ner or a multi-view studio [3, 46]. The cost and size pre-
vent the wide-spread use of such setups. Therefore, nu-
merous works address capturing body shape and pose with
more practical setups, e.g. from a low number of video
cameras [60], or using one or more depth cameras, either
specifically for the human body [9, 77, 84] or for general
free-form surfaces [88, 51, 54, 37, 26, 70]. The most prac-
tical but also challenging setting is capturing from a single
monocular RGB camera. Some methods attempt to infer
the shape parameters of a body model from a single im-
age [41, 53, 10, 24, 8, 32, 86, 39, 55], but reconstructed de-
tail is constrained to the model shape space, and thus does
not capture personalized shape detail and clothing geome-
try. Recent work [6, 5] estimates more detailed shape, in-
cluding clothing, from a video sequence of a person rotating
in front of a camera while holding a rough A-pose. While
reconstructed models have high quality, the optimization
approach takes around 2 minutes only for the shape com-
ponent. More importantly, the main bottleneck is the pre-
processing step, which requires fitting the SMPL model to
each of the frame silhouettes using time-consuming non-
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linear optimization (≈ 120 min for 120 frames). This is
impractical for many applications that require fast acquisi-
tion such as telepresence and gaming.

In this work, we address these limitations and intro-
duce Octopus, a convolutional neural network (CNN) based
model that learns to predict 3D human shapes in a canoni-
cal pose given a few frames of a person rotating in front of a
single camera. Octopus predicts using both, bottom-up and
top-down streams (one per view) allowing information to
flow in both directions. It can make bottom-up predictions
in 50ms per view, which are effectively refined top-down
using the same images in 10s. Inference, both bottom-up
and top-down, is performed fully-automatically using the
same model. Octopus is therefore easy to use and more
practical than previous work [6]. Learning only relies on
synthetic 3D data, and on semantic segmentation images
and keypoints derived from synthesized video sequences.
Consequently, Octopus can be trained without paired data –
real images with ground truth 3D shape annotations – which
is very difficult to obtain in practice.

Octopus predicts SMPL body model parameters, which
represent the undressed shape and the pose, plus additional
3D vertex offsets that model clothing, hair, and details be-
yond the SMPL space. Specifically, a CNN encodes F
frames of the person (in different poses) into F latent codes
that are fused to obtain a single shape code. From the shape
code, two separate network streams predict the SMPL shape
parameters, and the 3D vertex offsets in the canonical T-
pose space, giving us the “unpose” shape or T-shape. Pre-
dicting the T-shape forces the F latent codes to be pose-
invariant, which is necessary to fuse the shape information
contained in each frame. Octopus also predicts a pose for
each frame, which allows to “pose” the T-shape and ren-
der a silhouette to evaluate the overlap against the input im-
ages in a top-down manner during both training and infer-
ence. Specifically, since bottom-up models do not have a
feedback loop, the feed-forward 3D predictions are correct
but do not perfectly align with the input images. Conse-
quently, we refine the prediction top-down by optimizing
the F poses, the T-shape, and the vertex offsets to maxi-
mize silhouette overlap and joint re-projection error.

Experiments on a newly collected dataset (LifeScans),
the publicly available PeopleSnapshot dataset [6], and on
the dataset used in [9] demonstrate that our model infers
shapes with a reconstruction accuracy of 4mm in less than
10 seconds. In summary, Octopus is faster than purely
optimization-based fitting approaches such as [6], it com-
bines the advantages of bottom-up and top-down methods
in a single model, and can reconstruct detailed shapes and
clothing from a few video frames. Examples of reconstruc-
tion results are shown in Fig. 1. To foster further research
in this direction, we made Octopus available for research
purposes [2].

2. Related Work
Methods for 3D human shape and pose reconstruction

can be broadly classified as top-down or bottom-up. Top-
down methods either fit a free-form surface or a statistical
body model (model-based). Bottom-up methods directly in-
fer a surface or body model parametrization from sensor
data. We will review bottom-up and top-down methods for
human reconstruction.

Top-down, free-form methods non-rigidly deform
meshes [14, 22, 12] or volumetric shape representa-
tions [36, 4]. These methods are based on multi-view stereo
reconstruction [42], and therefore require multiple RGB
or depth cameras, which is a practical barrier for many
applications. Using depth cameras, KinectFusion [38, 52]
approaches reconstruct 3D scenes by incrementally fusing
frame geometry, and appearance [85], in a canonical frame.
Several methods build on KinectFusion for body scan-
ning [64, 47, 82, 20]. The problem is that these methods
require the person to stand still while the camera is turned
around. DynamicFusion [51] generalized KinectFusion
to non-rigid objects by combining non-rigid tracking and
fusion. Although template-free approaches [52, 37, 65]
are flexible, they can only handle very careful motions.
Common ways to add robustness are pre-scanning the
template [88], or using multiple kinects [26, 54] or multi-
view [67, 44, 19]. These methods, however, do not register
the temporal 3D reconstructions to the same template
and focus on other applications such as streaming or
telepresence [54]. Estimating shape by compensating for
pose changes can be tracked back to Cheung et al. [17, 18],
where they align visual hulls over time to improve shape
estimation. To compensate for articulation, they merge
shape information in a coarse voxel model. However,
they need to track each body part separately and require
multi-view input. All free-form works require multi-view
input, depth cameras or cannot handle moving humans.

Top-down, model-based methods exploit a parametric
body model consisting of pose and shape [7, 33, 48, 89,
57, 40] to regularize the fitting process. Some Depth-
based methods [77, 34, 79, 84, 9] exploit the temporal in-
formation by optimizing a single shape and multiple poses
(jointly or sequentially). This leads to expensive optimiza-
tion problems. Using mutli-view, some works achieve fast
performance [60, 61] at the cost of using a coarser body
model based on Gaussians [68], or a pre-computed tem-
plate [80]. Early RGB-based methods were restricted to es-
timating the parameters of a body model, and required mul-
tiple views [8] or manually clicked points [30, 86, 39, 63].
Shape and clothing have been recovered from RGB im-
ages [31, 15], depth [16], or scan data [56], but require man-
ual intervention or clothing is limited to a pre-defined set of
templates. In [78] a fuzzy vertex association from clothing
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to body surface is introduced, which allows complex cloth-
ing modeled as body offsets. Some works are in-between
free-form and model-based methods. In [27, 76], authors
pre-scan a template and insert a skeleton, and in [70] authors
combine the SMPL model with a volumetric representation
to track the clothed human body from a depth camera.

Bottom-up. Learning of features for multi-view photo-
consistency [45], and auto-encoders combined with visual
hulls [28, 72] have shown to improve free-form perfor-
mance capture. These works, however, require more than
one camera view. Very few works learn to predict personal-
ized human shape from images–lack of training data and the
lack of a feedback loop between feed-forward predictions
and the images makes the problem hard. Variants of random
forests and neural networks have been used [24, 23, 25, 75]
to regress shape from silhouettes. The problem here is that
predictions tend to look over-smooth, are confined to the
model shape space, and do not comprise clothing. Garments
are predicted [21] from a single image, but a single model
for every new garment needs to be trained, which makes it
hard to use in practice. Recent pure bottom-up approaches
to human analysis [50, 49, 58, 87, 69, 71, 62] typically pre-
dict shape represented as a coarse stick figure or bone skele-
ton, and can not estimate body shape or clothing.

Hybrid methods. A recent trend of works combines
bottom-up and top-down approaches–a combination that
has been exploited already in earlier works [66]. The most
straightforward way is by fitting a 3D body model [48] to
2D pose detections [10, 43]. These methods, however, can
not capture clothing and details beyond the model space.
Clothing, hair and shape [6, 5] can be inferred by fusing
dynamic silhouettes (predicted bottom-up) of a video to a
canonical space. Even with good 2D predictions, these
methods are susceptible to local minima when not initial-
ized properly, and are typically slow. Furthermore, the
2D prediction network and the model fitting is de-coupled.
Starting with a feed-forward 3D prediction, semantic seg-
mentation, keypoints and scene constraints are integrated
top-down in order to predict the pose and shape of multiple
people [81]. Other recent works integrate the SMPL model,
or a voxel representation [74], as a layer within a network
architecture [41, 55, 53, 73]. This has several advantages:
(i) predictions are constrained by a shape space of humans,
and (ii) bottom-up 3D predictions can be verified top-down
using 2D keypoints and silhouettes during training. How-
ever, the shape estimates are confined to the model shape
space and tend to be close to the average. The focus of these
works is rather on robust pose estimation, while we focus on
personalized shapes. We also integrate SMPL within our ar-
chitecture but our work is different in several aspects. First,
our architecture fuses the information of several images of
the same person in different poses. Second, our model in-
corporates a fast top-down component during training and

at test time. As a result, we can predict clothing, hair and
personalized shapes using a single camera.

3. Method
The goal of this work is to create a 3D model of a subject

from a few frames of a monocular RGB video, and in less
than 10 seconds. The model should comprise body shape,
hair, and clothing and should be animatable. We take inspi-
ration from [6] and focus on the cooperative setting with
videos of people rotating in front of a camera holding a
rough A-pose – this motion is easy and fast to perform, and
ensures that non-rigid motion of clothing and hair is not too
large. In contrast to previous work [6], we aim for fast and
fully automatic reconstruction. To this end, we train a novel
convolutional neural network to infer a 3D mesh model of a
subject from a small number of input frames. Additionally,
we train the network to reconstruct the 3D pose of the sub-
ject in each frame. This allows us to refine the body shape
by utilizing the decoder part of the network for instance-
specific optimization (Fig. 2).

In Sec. 3.1 we describe the shape representation used in
this work followed by its integration into the used predictor
(Sec. 3.2). In Sec. 3.3 we explain the losses, that are used in
the experiments. We conclude by describing the instance-
specific top-down refinement of results (Sec. 3.4).

3.1. Shape representation

Similar to previous work [83, 6], we represent shape us-
ing the SMPL statistical body model [48], which represents
the undressed body, and a set of offsets modeling instance
specific details including clothing and hair.

SMPL is a function M(·) that maps pose θ and shape β
to a mesh of V = 6890 vertices. By adding offsets D to the
template T, we obtain a posed shape instance as follows:

M(β,θ,D) =W (T (β,θ,D), J(β),θ,W) (1)

T (β,θ,D) = T+Bs(β) +Bp(θ) +D, (2)

where linear blend-skinning W (·) with weights W, to-
gether with pose-dependent deformations Bp(θ) allow to
pose the T-shape (T + Bs(β)) based on its skeleton joints
J(·). SMPL plus offsets, denoted as SMPL+D, is fully dif-
ferentiable with respect to pose θ, shape β and free-form
deformations D. This allows us to directly integrate SMPL
as a fixed layer in our convolutional architecture.

3.2. Model and data representation

Given a set of images I = {I0, . . . , IF−1} depicting a
subject from different sides with corresponding 2D joints
J = {J0, . . . ,JF−1}, we learn a predictor f∗w that in-
fers the body shape β, personal and scene specific body
features D, and 3D poses P = {θ0, . . . ,θF−1} along
with 3D positions T = {t0, . . . , tF−1} for each image.
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Figure 2. Overview of our method: Our novel CNN predicts 3D human shapes from semantic images in an canonical pose together with
per-image pose information calculated from 2D joint detections (left to center). The pose information can be used to refine the shape via
‘render and compare’ optimization using the same predictor (right to center).

f∗w : (I,J ) 7→ (β,D,P, T ) is a CNN parametrized by
network parameters w.

Input modalities. Images of humans are highly diverse
in appearance, requiring large datasets of annotated images
in the context of deep learning. Therefore, to abstract away
as much information as possible while still retaining shape
and pose signal, we build on previous work [29, 13] to sim-
plify each RGB image to a semantic segmentation and 2D
keypoint detections. This allows us to train the network us-
ing only synthetic data and generalize to real data.

Model parametrization. By integrating the SMPL+D
model (Sec. 3.1) into our network formulation, we can uti-
lize its mesh output in the training of f∗w. Concretely, we su-
pervise predicted SMPL+D parameters in three ways: Im-
posing a loss directly on the mesh vertices M(β,θ,D), on
the predicted joint locations J(β) and their projections on
the image, and densely on a rendering of the mesh using a
differential renderer [35].

The T-shape (T+Bs(β)+D) in Eq. 2 is now predicted
from the set of semantic images I with the function:

S(I) = T+Bs(f
β
w (I)) + fDw (I), (3)

where f∗w are the regressors to be learned. Similarly, the
mesh posed N3D(I,J , i) is predicted from the image Ii
and 2D joints Ji with the function:

N3D(I,J , i) = W (P (I, i), J(fβw(I)), fθiw (I,J ),W) (4)

P (I,J , i) = S(I) +Bp(f
θi
w (I,J )), (5)

from which the 3D Joints are predicted with the linear re-
gressor JB25:

NJ3D
(I,J , i) = JB25(N3D(I,J , i)) (6)

JB25 has been trained to output 25 joint locations consistent
with the BODY 25 [1] keypoint ordering. The estimated
posed mesh N3D can be rendered in uniform color with the
image formation function R(·) paramerized by camera c:

N2D(I,J , i) = Rc(N3D(I,J , i)) (7)

Similarly, we can project the the joints NJ3D
to the image

plane by perspective projection π:

NJ2D
(I,J , i) = πc(NJ3D(I,J , i)) (8)

All these operations are differentiable, which we can con-
veniently use to formulate suitable loss functions.

3.3. Loss functions

Our architecture permits two sources of supervision: (i)
3D supervision (in our experiments, from synthetic data de-
rived by fitting SMPL+D to static scans), and (ii) 2D super-
vision from video frames alone. In this section, we discuss
different loss functions used to train the predictors f∗w.

Losses on body shape and pose For a paired sample
in the dataset {(I,J ), (β,D,P, T )} we use the following
losses between our estimated model N3D and the ground
truth model M(·) scan:

• Per-vertex loss in the canonical T-pose 0θ. This loss
provides a useful 3D supervision on shape indepen-
dently of pose:

LS = ||S(I)−M(β,0θ,D)||2 (9)

• Per-vertex loss in posed space. This loss supervises
both pose and shape on the Euclidean space:

LN3D =

F−1∑
i=0

||N3D(I,J , i)−M(β,θi,D)||2 (10)

• Silhouette overlap:

LN2D =

F−1∑
i=0

||Rc(N3D(I,J , i))− b(Ii)||2, (11)

where b(Ii) is the binary segmentation mask and Rc is
the image formation function defined in Eq. 7. LN2D

is
a weakly supervised loss as it does not require 3D anno-
tations and b(Ii) can be estimated directly from RGB im-
ages. In the experiments, we investigate whether such self-
supervised loss can reduce the amount 3D supervision re-
quired (see 4.4). Additionally, we show that N2D can be
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used at test time to refine the bottom-up predictions and cap-
ture instance specific details in a top-down manner (see 3.4).

• Per-vertex SMPL undressed body loss:

The aforementioned losses only penalize the final SMPL+D
3D shape. It is useful to include an ”undressed-body” (Ŝ)
loss to force the shape parameters β to be close to the
ground truth

LŜ = ||Ŝ(I)−M(β,0θ,0D)||2 (12)

Ŝ(I) = T+Bs(f
β
w (I)), (13)

where 0D are vectors of length 0. This also prevents that
the offsets D explain the overall shape of the person.

Pose specific losses. In addition to the posed spaceLN3D

and silhouette overlap LN2D
losses, we train for the pose

using a direct loss on the predicted parameters Lθ,t

Lθ,t =
F−1∑
i=0

(
||R(fθiw )−R(θi)||2 + ||f tiw − ti||2

)
, (14)

where R are vectorized rotation matrices of the 24 joints.
Similar to [53, 43, 55], we use differentiable SVD to force
the predicted matrices to lie on the manifold of rotation ma-
trices. This term makes the pose part of the network con-
verge faster.

Losses on joints. We further regularize the pose training
by imposing a loss on the joints in Euclidean space:

LJ3D =

F−1∑
i=0

||NJ3D (I,J , i)− JB25(M(β,θi,D))||2 (15)

Similar to the 2D image projection loss on modelLN2D
(Eq.

11), we also have a weakly supervised 2D joint projection
loss LJ2D

LJ2D
=

F−1∑
i=0

||NJ2D
(I,J , i)− πc(JB25(M(β,θi,D)))||2. (16)

3.4. Instance-specific top-down optimization

The bottom-up predictions of the neural model can be
refined top-down at test time to capture instance specific
details. It is important to note that this step requires no 3D
annotation as the network fine-tunes using only 2D data.
Specifically, at the test time, given a subject’s images I and
2D joints J we optimize a small set of layers in f∗w using
image and joint projection losses LN2D

,LJ2D
(see 4.1). By

fixing most layers of the network and optimizing only la-
tent layers, we find a compromise between the manifold
of shapes learned by the network and new features, that
have not been learned. We further regularize this step us-
ing Laplacian smoothness, face landmarks, and symmetry
terms from [6, 5]. Table 1 illustrates the performance of the
pipeline before and after optimization (see 4.2, 4.3).

Figure 3. Sample scans from the LifeScans dataset.

4. Experiments

The following section focuses on the evaluation of our
method. In Sec. 4.1 we introduce technical details of the
used dataset and network architecture. The following sec-
tions describe experiments for quantitative and qualitative
evaluation as well as ablation and parameter analysis.

4.1. Experimental setup

Dataset. To alleviate the lack of paired data, we use
2043 static 3D scans of people in clothing. We pur-
chased 163 scans from renderpeople.com and 54 from axyz-
design.com. 1826 scans were kindly provided from Twin-
dom (https://web.twindom.com/). Unfortunately, in the
2043 there is not enough variation in pose and shape to
learn a model that generalizes. Hence, we generate syn-
thetic 3D data by non-rigidly registering SMPL+D to each
of the scans. This allows us to change the underlying body
shape and pose of the scan using SMPL, see Fig. 3. Like [6],
we focus on a cooperative scenario where the person is
turning around in front of the camera. Therefore, we ani-
mate the scans with turn-around poses and random shapes
and render video sequences from them. We call the re-
sulting dataset LifeScans, which consists of rendered im-
ages paired with 3D animated scans in various shapes and
poses. Since the static scans are from real people, the gen-
erated images are close to photo-realistic, see Fig 3. To
prevent overfitting, we use semantic segmentation together
with keypoints as intermediate image representation, which
preserve shape and pose signatures while abstracting away
appearance. This reduces the amount of appearance vari-
ation required for training. To be able to render synthetic
semantic segmentation, we first render the LifeScans sub-
jects from different viewpoints and segment the output with
the method of [29]. Then we project the semantic labels
back in the SMPL texture space and fuse different views
using graph cut-based optimization. This final step enables
full synthetic generation of paired training data.

Scale ambiguity. Scale is an inherent ambiguity in
monocular imagery. Three factors determine the size of
an object in an image: distance to the camera, camera in-
trinsics, and the size of the object. As it is not possible to
decouple this ambiguity in a monocular set-up with moving
objects, we fix two factors and regress one. In other works
[53, 41, 55] authors have assumed fixed distance to the cam-
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era. We cannot make this assumption, as we leverage mul-
tiple images of the same subject, where the distances to
the camera may vary. Consequently, we fix the size of the
subject to average body height. Precisely, we make SMPL
height independent, by multiplying the model by 1.66m di-
vided by the y-axis distance of vertices describing ankles
and eyes. Finally, we fix the focal length to sensor height.
Network architecture. In the following we describe de-
tails of the convolutional neural network f∗w. An overview
is given in Fig. 4. The input to f∗w is a set of 1080x1080px
semantically segmented images I and corresponding 2D
joint locations J . f∗w encodes each image Ii with a set
of five, 3x3 convolutions with ReLU activations followed
by 2x2 max-pooling operations into a pose invariant latent
code linv

i . In our experiments we fixed the size of linv
i to

20. The pose branch maps both joint detections Ji and out-
put of the last convolutional layer to a vector of size 200
and finally to the pose-dependent latent code lpose

i of size
100 via fully connected layers. The shape branch aggre-
gates pose invariant information across images and com-
putes mean linv. Note that this formulation allows us to ag-
gregate pose-dependent and invariant information across an
arbitrary and varying number of views. The shape branch
goes on to predict SMPL shape parameters β and free-form
deformations D on the SMPL mesh. β is directly calculated
from linv with a linear layer. In order to predict per-vertex
offsets from the latent code linv, we use a four-step graph
convolutional network with Chebyshev filters and mesh up-
sampling layers similar to [59]. Each convolution is fol-
lowed by ReLU activation. We prefer a graph convolutional
network over a fully connected decoder due to memory con-
straints and in order to get structured predictions.
Training scheme. The proposed method, including ren-
dering, is fully differentiable and end-to-end trainable. Em-
pirically we found it better to train the pose branch before
training the shape branch. Thereafter, we optimize the net-
work end-to-end. We use a similar training schedule for our
pose branch as [55], where we first train the network us-
ing losses on the joints and pose parameters (LJ3D

,Lθ,t)
followed by training using losses on the vertices and pose
parameters (LN3D

,Lθ,t). We also experiment with various
training schemes, and show that weakly supervised training
can significantly reduce the dependence on 3D annotated
data (see Sec. 4.4). For that experiment, we train the model
with alternating full (LS ,LŜ ,LN3D

,LJ3D
) and weak super-

vision (LN2D
,LJ2D

). During instance-specific optimization
we keep most layers fixed and only optimize latent pose
lpose, latent shape linv and the last graph convolutional layer,
that outputs free-form displacements D.

4.2. Numerical evaluation

We quantitatively evaluate our method on a separated test
set of the LifeScans dataset containing 55 subjects. We use

Before optimization After optimization
Full Pipeline 4.47 ±4.45 4.00 ±3.94
GT Poses 4.47 ±4.41 3.17 ±3.41

Table 1. Mean vertex error (mm) of 55 test samples computed on
F = 8 input images. The full method with inferred poses produces
comparable results to using GT poses. Both variants gain accuracy
from subsequent optimization.

F = 8 semantic segmentation images and 2D poses as in-
put and optimize the results for a maximum budget of 10
seconds. All results have been computed without intensive
hyper-parameter tuning. To quantify shape reconstruction
accuracy, we adjust the pose of the estimation to match the
ground truth, following [83, 9]. This disentangles errors
in pose from errors in shape and allows to quantify shape
accuracy. Finally, we compute the bi-directional vertex to
surface distance between scans and reconstructions. We re-
port mean errors in millimeters (mm) across the test set in
Tab. 1. We differentiate between full method and ground
truth (GT) poses. Full method refers to our method as de-
scribed in Sec. 4.1. The latter is a variant of our method
that uses ground truth poses, which allows to study the ef-
fect of pose errors. In Fig. 5 we display subjects in the test
set for both variants along with per-vertex error heatmaps.
Visually the results look almost indistinguishable, which is
corroborated by the fact that the numerical error increases
only by ≈ 1mm between GT and predicted pose models.
This demonstrates the robustness of our approach. We show
more examples with the corresponding texture for qualita-
tive assessment in Fig. 1. The textures have been computed
using graph cut-based optimization using semantic labels as
described in [5].

4.3. Analysis of key parameters

Our method comes with two key hyper-parameters,
namely number of input images F , and number of optimiza-
tion steps. In the following section, we study these param-
eters and how they affect the performance of our approach.
We also justify our design choices.

Fig. 7 illustrates the performance of our method with
growing number of optimization steps. While the perfor-
mance gain saturates at around 70 − 80 steps, we use 25
steps in following experiments as a compromise between
accuracy and speed. For the case of F = 8 input images op-
timization for 25 steps takes ≈ 10s on a single Volta V100
GPU. We believe 10s is a practical waiting time and a good
compromise for many applications. Therefore we fix the
time budget to 10s for the following experiments.

Including more input views at test time can potentially
improve the performance of the method. However, in prac-
tice, this means more data pre-processing and longer infer-
ence times. Fig. 8 illustrates the performance with differ-
ent number of input images. Perhaps surprisingly, the per-
formance saturates already at around 5 images before opti-
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We use a graph convolution based decoder, to learn per-vertex offsets D. The entire model is end-to-end trainable. The orange FC layers
and the final graph convolution layer can be fine-tuned at test time to better model instance-specific details (see Sec. 3.4).
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Figure 5. Results from LifeScans in comparison to ground truth shapes (green). We show results computed with ground truth poses (blue)
and results of the full method (yellow) with corresponding error heatmaps with respect to ground truth shapes (red means � 2cm).

mization. After optimization, a different picture emerges.
The error in the full method slightly increases for larger
number of views, while it still goes down for GT poses.
This can be explained with the fixed time budget in this ex-
periment. Small errors in pose cannot be corrected and are
erroneously compensated by the shape. This is not a major
problem since our method produces good results given even
only a single input image. While we could potentially use
fewer images, we found F = 8 views as a practical number
of input views. This has the following reason: A calculated
avatar should not only be numerically accurate but also vi-
sually appealing. Results based on more number of views
show more fine details and most importantly allow accurate
texture calculation.

4.4. Type of supervision

Since videos are easier to obtain than 3D annotations, we
evaluate to which extent they can substitute full 3D supervi-
sion to train our network. To this end, we split the LifeScans
dataset. One part is used for full supervision, the other part
is used for weak supervision in form of image masks and
2D keypoints. All forms of supervision can be syntheti-
cally generated from the LifeScans dataset. We train f⇤

w

with 10%, 20%, 50%, and 100% full supervision and com-
pare the performance on the test set in Tab. 2. In order to
factor out the effect of problematic poses during the train-
ing, we used ground truth poses in this experiment. The
results suggest that f⇤

w can be trained with only minimal
amount of full supervision, given strong pose predictions.
The performance of the network decreases only slightly for

Before optimization After optimization
100% 4.47 ±4.41 3.17 ±3.41
50% 4.57 ±4.52 3.19 ±3.43
20% 4.74 ±4.65 3.29 ±3.53
10% 4.73 ±4.56 3.46 ±3.62

Table 2. Mean vertex error (mm) of 55 test samples with different
amount of full supervision during training of the shape branch.
f⇤

w can be trained with only 10% full supervision with minimal
accuracy lose.

less than 100% full supervision. Most interestingly, the re-
sults are almost identical for 10%, 20%, and 50% full super-
vision. This experiment suggests that we could potentially
improve performance by supervising our model with addi-
tionally recorded videos. We leave this for future work.

4.5. Qualitative results and comparisons

We qualitatively compare our method against the most
relevant work [6] on their PeopleSnapshot dataset. While
their method leverages 120 frames, we still use F = 8
frames for our reconstructions. For a fairer comparison,
we optimize for ⇡ 20s in this experiment. This is still
several magnitudes faster than the 122min needed by [6].
Their method needs 2 minutes for shape optimization plus
1 minute per frame for the pose. In Fig. 6 we show side-by-
side comparison to [6]. Our results are visually still on par
while requiring a fraction of the data.

We also compare our method against [9], a RGB-D based
optimization method. Their dataset displays subjects in
minimal clothing rotating in front of the camera in T-pose.
Unfortunately, the semantic segmentation network is not

Figure 5. Results from LifeScans in comparison to ground truth shapes (green). We show results computed with ground truth poses (blue)
and results of the full method (yellow) with corresponding error heatmaps with respect to ground truth shapes (red means ≥ 2cm).

mization. After optimization, the error saturates at around
8 images. While more images potentially means better su-
pervision, we cannot see improved results for optimization
on many images. This can be explained with the fixed time
budget in this experiment, where more images mean fewer
optimization steps. While we could potentially use fewer
images, we found F = 8 views as a practical number of
input views. This has the following reason: A calculated
avatar should not only be numerically accurate but also vi-
sually appealing. Results based on more number of views
show more fine details and most importantly allow accurate
texture calculation.

4.4. Type of supervision

Since videos are easier to obtain than 3D annotations, we
evaluate to which extent they can substitute full 3D supervi-
sion to train our network. To this end, we split the LifeScans
dataset. One part is used for full supervision, the other part
is used for weak supervision in form of image masks and
2D keypoints. All forms of supervision can be syntheti-
cally generated from the LifeScans dataset. We train f∗w
with 10%, 20%, 50%, and 100% full supervision and com-
pare the performance on the test set in Tab. 2. In order to
factor out the effect of problematic poses during the train-
ing, we used ground truth poses in this experiment. The
results suggest that f∗w can be trained with only minimal
amount of full supervision, given strong pose predictions.
The performance of the network decreases only slightly for
less than 100% full supervision. Most interestingly, the re-
sults are almost identical for 10%, 20%, and 50% full super-

Before optimization After optimization
100% 4.47 ±4.41 3.17 ±3.41

50% 4.57 ±4.52 3.19 ±3.43
20% 4.74 ±4.65 3.29 ±3.53
10% 4.73 ±4.56 3.46 ±3.62

Table 2. Mean vertex error (mm) of 55 test samples with different
amount of full supervision during training of the shape branch.
f∗
w can be trained with only 10% full supervision with minimal

accuracy lose.

vision. This experiment suggests that we could potentially
improve performance by supervising our model with addi-
tionally recorded videos. We leave this for future work.

4.5. Qualitative results and comparisons

We qualitatively compare our method against the most
relevant work [6] on their PeopleSnapshot dataset. While
their method leverages 120 frames, we still use F = 8
frames for our reconstructions. For a fairer comparison,
we optimize for ≈ 20s in this experiment. This is still
several magnitudes faster than the 122min needed by [6].
Their method needs 2 minutes for shape optimization plus
1 minute per frame for the pose. In Fig. 6 we show side-by-
side comparison to [6]. Our results are visually still on par
while requiring a fraction of the data.

We also compare our method against [9], a RGB-D based
optimization method. Their dataset displays subjects in
minimal clothing rotating in front of the camera in T-pose.
Unfortunately, the semantic segmentation network is not
able to successfully segment subjects in minimal clothing.
Therefore we sightly change the set-up for this experiment.
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Figure 6. Comparison to the state-of-the-art optimization based method [6]. Their method (a) uses 120 frames, while ours (b) only uses 8
images and is several magnitudes faster.
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Figure 7. Error decrease of the test set with increased number of
optimization steps computed on F = 8 input images.
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Figure 8. Error development on the test set with increased number
of input views F before (dashed) and after optimization (solid).
Optimization has been limited by a time budget of 10s allowing
very few gradient steps for large numbers of views, which explains
why the error plateaus for more than 8 views.

We segment their dataset using the semi-automatically ap-
proach [11] and re-train our predictor to be able to process
binary segmentation masks. Additionally, we augment the
LifeScans dataset with T-poses. We show side-by-side com-
parisons in Fig. 9. Again our results are visually similar,
despite the use of less and only monocular data.

5. Discussion and Conclusion
We have proposed a novel method for automatic 3D body

shape estimation from only 1 − 8 frames of a monocular
video of a person moving. Our Octopus model predicts
mesh-based pose invariant shape and per-image 3D pose
from a flexible number of views. Experiments demonstrate
that the feed-forward predictions are already quite accurate
(4.5mm), but often lack detail and do not perfectly overlap
with the input images. This motivates refining the estimates
with top-down optimization against the input images. Re-
fining brings the error down to 4mm and aligns the model
with the input image silhouettes, which allows texture map-

a) b)

Figure 9. Comparison to the RGB-D method [9] (a). Our method
(b) is visually on par, despite using only 8 RGB images as input.

ping. In summary, we improve over the state-of-the-art in
the following aspects: Our method allows, for the first time,
to estimate full body reconstructions of people in clothing in
a fully automatic manner. We significantly reduce the num-
ber of needed images at test time, and compute the final
result several magnitudes faster than state-of-the-art (from
hours to seconds). Extensive experiments on the LifeScans
dataset demonstrate the performance and influence of key
parameters of the predictor. While our model is indepen-
dent on the number of input images and can be refined for
different numbers of optimization steps, we have shown that
using 8 views and refining for 10 seconds are good compro-
mises between accuracy and practicability. Qualitative re-
sults on two real-world datasets demonstrate generalization
to real data, despite training from synthetic data alone.

Future work should enable the proposed method for sce-
narios where the subject is not cooperating, for example
from Youtube videos, or legacy movie material. Further-
more, clothing with geometry far from the body, such as
skirts and coats or hairstyles like ponytails will require a
different formulation.

By enabling fully automatic 3D body shape reconstruc-
tion from a few images in only a few seconds, we prepare
the ground for wide-spread acquisition of personalized 3D
avatars. People are now able to quickly digitize themselves
using only a webcam and can use their model for various
VR and AR applications.
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Christian Theobalt, and Marc Stamminger. Volumedeform:
Real-time volumetric non-rigid reconstruction. In European
Conf. on Computer Vision, 2016. 1, 2

[38] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In ACM symposium
on User interface software and technology, pages 559–568.
ACM, 2011. 2

[39] Arjun Jain, Thorsten Thormählen, Hans-Peter Seidel, and
Christian Theobalt. Moviereshape: Tracking and reshaping
of humans in videos. In ACM Transactions on Graphics,
volume 29, page 148. ACM, 2010. 1, 2

[40] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total capture:
A 3d deformation model for tracking faces, hands, and bod-
ies. In IEEE Conf. on Computer Vision and Pattern Recog-
nition, pages 8320–8329, 2018. 2

[41] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In IEEE Conf. on Computer Vision and Pattern Recog-
nition. IEEE Computer Society, 2018. 1, 3, 5

[42] Reinhard Koch, Marc Pollefeys, and Luc Van Gool. Multi
viewpoint stereo from uncalibrated video sequences. In Eu-
ropean conf. on computer vision, pages 55–71. Springer,
1998. 2

[43] Christoph Lassner, Javier Romero, Martin Kiefel, Federica
Bogo, Michael J Black, and Peter V Gehler. Unite the peo-
ple: Closing the loop between 3d and 2d human representa-
tions. In IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2017. 3, 5
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