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Abstract—We propose DoubleFusion, a new real-time system that combines volumetric non-rigid reconstruction with data-driven
template fitting to simultaneously reconstruct detailed surface geometry, large non-rigid motion and the optimized human body shape
from a single depth camera. One of the key contributions of this method is a double-layer representation consisting of a complete
parametric body model inside, and a gradually fused detailed surface outside. A pre-defined node graph on the body parameterizes the
non-rigid deformations near the body, and a free-form dynamically changing graph parameterizes the outer surface layer far from the
body, which allows more general reconstruction. We further propose a joint motion tracking method based on the double-layer
representation to enable robust and fast motion tracking performance. Moreover, the inner parametric body is optimized online and
forced to fit inside the outer surface layer as well as the live depth input. Overall, our method enables increasingly denoised, detailed
and complete surface reconstructions, fast motion tracking performance and plausible inner body shape reconstruction in real-time.
Experiments and comparisons show improved fast motion tracking and loop closure performance on more challenging scenarios. Two
extended applications including body measurement and shape retargeting show the potential of our system in terms of practical use.

Index Terms—Computer Vision, 3D Reconstruction, Real-time, Performance Capture.
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1 INTRODUCTION

HUMAN performance capture has been a challenging re-
search topic in computer vision and computer graph-

ics for decades. The goal is to reconstruct a temporally co-
herent representation of the dynamically deforming surface
of human characters from videos. Although array based
methods [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] using
multiple video or depth cameras are well studied and have
achieved high quality results, the expensive camera-array
setups and controlled studios limit its application to a few
technical experts. As depth cameras are increasingly popu-
lar in the consumer space (iPhone X/XS, Google Tango, etc.),
the recent trend focuses on using more and more practical
setups like a single depth camera [11], [12], [13]. In particu-
lar, by combining non-rigid surface tracking and volumetric
depth integration, DynamicFusion like approaches [14],
[15], [16], [17] achieved real-time dynamic scene reconstruc-
tion using a single depth camera without the requirement
of pre-scanned templates. Such systems are low cost, easy
to set up and promising for popularization; however, they
are still restricted to controlled slow motion due to the very
big solution space for general non-rigid surface tracking.
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Fig. 1. Our system and the real-time reconstructed results.

The challenges are occlusions (single view), computational
resources (real-time), loop closure and the lack of a pre-
scanned template model.

Recent methods that use articulated motion priors ( [18]
and [19]) for real-time non-rigid fusion have achieved
better results than those of [20] and [16]. These methods
have shown that regularizing non-rigid deformations with a
skeleton or articulated motion prior is beneficial for captur-
ing human performance. Moreover, by explicitly utilizing
human skeleton structure, [18] generates better human
performance capture results than [19], which uses general
articulated motion prior for general object reconstruction.
However, the system of [18] fails during fast motion, espe-
cially when the surface is not yet complete, since the human
joints are too sparse and only the gradually fused surface
is available for tracking. Moreover, the skeleton embedding
performance of [18] relies heavily on the initialization step
because the embedding is fixed after initialization in their
method. Inaccurate skeleton embedding leads to deterio-
rated motion tracking and surface skinning performance.

For human performance capture, besides the skeleton,
body shape is also a very strong prior since it is loop closed
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and complete. To fully take advantage of both human shape
and pose motion prior, we propose “DoubleFusion”: a single-
view and real-time dynamic surface reconstruction system
that simultaneously reconstructs general cloth geometry
and inner body shape. Based on the recent state-of-the-art
body model SMPL [21], we propose a double-layer surface
representation consisting of an outer surface layer, and an
inner body layer for reconstruction and depth registration.
In addition, we make each layer benefit from each other.
The observed outer surface is gradually fused and deformed
while the shape and pose parameters of the inner body layer
are also gradually optimized to fit inside the outer surface
as well as the live depth input. On one hand, the inner
body layer is a complete model that allows to find enough
correspondences, especially when only partial surface is
obtained; in addition, it places a constraint on where to fuse
the geometry of the outer surface. On the other hand, the
gradually fused outer surface provides increasingly more
constraints to update the body shape and pose online. Note
that since we optimize the inner body layer according to
the outer fused surface, the estimated body shape in our
pipeline may not be the real inner body shape of the subject
(especially when capturing very loose cloth). Finally, the two
layers are solved sequentially in real-time.

Overall, our proposed DoubleFusion system offers the
new ability to simultaneously reconstruct the inner body
shape and pose as well as the outer surface geometry and
motion in real-time. This is achieved by using only a single
depth camera without a separate pre-scanning phase, and
only requiring an initialisation pose. Figure 1 shows the
system setup and the real-time reconstruction results. Com-
pared to systems that only reconstruct the outer surface like
BodyFusion [18], we demonstrate substantially improved
performance in handling fast motion. In contrast to systems
specialized to capture the inner body [13], our approach
can handle people wearing casual clothing, and it works in
real-time. We make the following technical contributions in
this paper to enable the above advantages.

• We propose the double-layer representation (Section
3.1) for high quality and real-time human perfor-
mance capture. We define the double node graph
that contains an on-body node graph and a far-body
node graph. The double node graph enables better
leverage of the human shape and pose prior, while
still maintaining the ability to handle surface defor-
mations that are far from the inner body surface.
The double-layer representation may also be used
in other human performance capture setups (e.g.,
multi-view systems) or other performance capture
tasks (e.g., capturing animals).

• Joint motion tracking (Section 4). We introduce a
method to jointly optimize for the pose of the inner
body shape and the non-rigid deformation of the
outer surface based on the double-layer represen-
tation. Feature correspondences on both the inner
body shape and fused outer layer enable fast motion
tracking performance and robust geometry fusion.

• Inner body optimization (Section 5.2). We optimize
the parametric body model, according to the con-
tinuously updated truncated signed distance field

(TSDF) in the canonical volume, without searching
for vertex correspondences explicitly. Moreover, we
also incorporate live depth input into the inner body
optimization step. The optimized body shape and
pose (joint positions) in the canonical frame (which
is defined by the first depth frame) enables more
accurate surface tracking and deformation results.

A preliminary version of this paper appeared in [22],
which introduced an effective method for real-time hu-
man performance capture based on the proposed double-
layer representation. The present work makes the following
additional contributions. First, we propose dynamic detail
deformation (Section 5.1), a simple yet efficient method
for the recovery of the high frequency and dynamic details
on the surface geometry (e.g., cloth wrinkles), which are
seriously smoothed by the continuous fusion stragegy used
in recent fusion-based dynamic 3D reconstruction methods
(e.g., [14], [15], [16], [17] and [22]). Second, we introduce a
new energy term for inner body optimization based on live
depth input (Section 5.2). In the previous version, we only
optimized the body according to the TSDF in the canonical
volume. Although this method efficiently generates plausi-
ble inner body shapes, the actural body embedding in the
canonical volume (which is also the skeleton embedding of
the continuously fused canonical model) may not accurate
due to the insufficient A-pose canonical volume informa-
tion. For example, the positions of the knees are difficult
to estimate under the A-pose since there are no bendings
around the knees. In the current version, we incorporate live
depth input and the constraints from all the live poses to
improve the inner body reconstruction accuracy, especially
inner body embedding in the canonical model as shown
in Figure 7(left). Third, to better evaluate our method, we
add two additional comparisons with state-of-the-art real-
time non-rigid reconstruction methods (Section 6.3). Fourth,
we include the analysis and comparison with the state-
of-the-art learning-based methods that also reconstruct the
body shape and pose (Section 2 and Section 6.3). Finally,
we present two novel applications: (1) convenient human
body measurement, and (2) body shape retargeting, which
further demonstrate the practicability and effectiveness of
our system (Section 7).

2 RELATED WORK

In this work, we focus on capturing the dynamic geometry
of human performer with detailed surface and personal
body shape identity using a single depth sensor. The related
methods can roughly divided into static template based,
model-based, free-form and learning-based reconstruction
methods.

Static template based dynamic reconstruction. For per-
formance capture, some of the previous works leverage pre-
scanned templates. Thus surface reconstruction is turned
into a motion tracking and surface deformation problem.
Vlasic et al. [23] and Gall et al. [2] adopted a template
with embedded skeleton driven by multi-view silhouettes
and temporal feature constraints. Liu et al. [24] extended
the method to handle multiple interacting performers. Some
approaches [25], [26] use a random forest to predict corre-
spondences to a template, and use them to fit the template to
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the depth data. Ye et al. [5] considered the case of multiple
Kinects input. Ye et al. [27] adopted a similar skinned
model to estimate body shape and pose using a single depth
camera in real-time.

Besides templates with an embedded skeleton, some
works adopted template based non-rigid surface deforma-
tion. Li et al. [28] utilized embedded deformation graph in
Sumner et al. [29] to parameterize the pre-scanned template
to produce locally as-rigid-as-possible deformation. Guo et
al. [12] adopted an `0 norm constraint to generate articulate
motion without explicitly embedded skeleton. Zollhöfer et
al. [11] took advantage of massive parallelism of GPU to
enable real-time performance of general non-rigid tracking.

The aforementioned works require scanning a template
step before capturing people with different identities or
even the same performer with various apparels.

Model-based dynamic reconstruction. In addition to
pre-scanned templates, many general body models have
been proposed in the last decades. SCAPE [30] is a widely
used model, it factorizes deformations into pose and shape
components. SMPL [21] is a recent body model that repre-
sents shape and pose dependent deformations in an efficient
linear formulation. Dyna [31] learned a low-dimensional
subspace to represent soft-tissue deformations.

Many research works utilized these shape priors to en-
force more general constraints to capture dynamic bodies.
Chen et al. [32] adopted SCAPE to capture body motion us-
ing a single depth camera. Bogo et al. [13] extended SCAPE
to capture detailed body shape with appearance. Bogo et al.
[33] used SMPL to fit predicted 2D joint locations to estimate
human shape and pose. However, neither SCAPE nor SMPL
can represent arbitrary geometry of the performer wear-
ing various apparels. In Zhang et al. [34] they addressed
this problem by estimating the inner shape and recovering
surface details. Pons-Moll et al. [10] introduce ClothCap,
which jointly estimates clothing geometry and body shape
using separate meshes. In both [34] and [10], results are
only shown for complete 4D scan sequences. Alldieck et al.
[35] reconstruct detailed shape including clothing from a
monocular RGB video but the approach is off-line.

Free-form dynamic reconstruction. Free-form capture
does not assume any geometric prior. For general non-
rigid scenes, motion and geometry are closely coupled. In
order to fuse regions visible in the future into a complete
geometry, the algorithm needs to estimate non-rigid motion
accurately. On the other hand, one needs accurate geometry
to estimate motion accurately. In the last decades, many
methods have been proposed to address free-form capture:
linear variational deformation [36], deformation graph [37],
subspace deformation [38], articulate deformation [39],
[40] and [41], 4D spatio-temporal surface [42] and [43],
incompressible flows [44], animation cartography [45],
quasi-rigid motion [46] and directional field [47].

Only in recent years, free-form capture methods with
real-time performance have been proposed. DynamicFusion
[14] proposed a hierarchical node graph structure and an
approximate direct GPU solver to enable capturing non-
rigid scenes in real-time. Guo et al. [16] proposed a real-
time pipeline that utilized shading information of dynamic
scenes to improve non-rigid registration, meanwhile accu-
rate temporal correspondences are used to estimate surface

appearance. Innmann et al. [15] used SIFT features to im-
prove tracking and Slavcheva et al. ( [17] and [20]) leveraged
the Killing constraint and variational level set method to
handle topological changes and relatively fast non-rigid
motion. However, none of these methods demonstrated full
body performance capture with natural motion. Fusion4D
[8] and Motion2Fusion [48] used multiple depth cameras
to capture dynamic scenes with challenging motion in real-
time. BodyFusion [18] utilized skeleton priors for human
body reconstruction, while Li et al. [19] used an articulated
motion prior generated from node-graph segmentation for
general objects. Although they both achieved more robust
motion tracking performance than [14] and [15], neither
can handle challenging fast motion of the human body or
guarantee plausible loop closure performance. Note that
based on the proposed method, [49] has achieved more
accurate motion tracking performance by combining multi-
ple IMUs with the RGBD camera, and [50] has achieved
more realistic cloth tracking results by utilizing physics-
based cloth simulation.

Learning-based 3D body reconstruction. Learning-
based 3D human body reconstruction has become a popular
topic in recent years. Many works ( [51], [52], [53], [54], [55],
[56] and [57]) focus on inferring 3D human body shape and
pose from a single RGB image or silhouettes. For example,
Kanazawa et al. [51], Pavlakos et al. [52] and Omran et al.
[56] integrated the SMPL model [21] within a deep neural
network, and have shown the effectiveness of end-to-end
frameworks for reconstructing a full 3D mesh of the human
body from a single RGB image. Omran et al. [56] further
demonstrated that, before lifting 2D to 3D, simplifying RGB
images to semantic segmentations is beneficial. Addition-
ally, they showed that when provided with a large amount
of 2D annotations, only a small amount of 3D annotations
are required for good performance. In contrast to mesh
representations, Varol et al. [53] proposed a neural network
for direct inference of volumetric body shape from a single
image. By extending [33], Lassner et al. [54] generated
a high-quality 3D body model for multiple human pose
datasets, followed by training discriminative models with
labels of 91 body landmark locations. They also validated
the effectiveness of the 91-landmark pose estimator in terms
of the accuracy of 3D human pose and shape optimization.
Dibra et al. [55] used frontal and side silhouettes of the
human body as input and inferenced the 3D body mesh
directly using cross-modal neural networks and generative
HKS descriptors. [57] used SMPL model as a complete-
body-prior for volumetric inference of the 3D human body
(including the real world geometry of the cloth). Benefiting
from the rapid development of deep learning techniques
and the large amount of available training data, these meth-
ods have achieved impressive body reconstruction results in
a convenient and practical manner, even under challenging
conditions. However, the main drawback of these methods
is the temporally incoherent pose and shape reconstruction
results when the methods are applied independently frame
by frame. Moreover, most of the methods cannot achieve
real-time performance. Finally, there is an additional line
of learning-based methods, including [58] and [59], that
have achieved realistic inference of cloth dynamics, but
these methods still need either real captured high-quality
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4D sequences or simulated cloth dynamics as training data
to train specific models for different types of cloth.

3 OVERVIEW

3.1 Double-layer Surface Representation
The input to DoubleFusion is a depth stream captured from
a single consumer-level depth sensor and the output is
a double-layer representation of the performer. The outer
layer are observable surface regions, such as clothing, visible
body parts (e.g., face and hair), while the inner layer is a
parametric human shape and skeleton model based on the
skinned multi-person linear model (SMPL [21]). Similar
to previous work [14], the motion of the outer surface
is parametrized by a set of nodes. Every node deforms
according to a rigid transformation. The node graph inter-
connects the nodes and constrain them to deform similarly.
Unlike [14] that uniformly samples nodes on the newly
fused surface, we pre-define an on-body node graph on
the SMPL model, which provides a semantic and real prior
to constrain non-rigid human motion. For example, it will
prevent erroneous connections between body parts (e.g.,
connecting the legs). We uniformly sample on-body nodes
and use geodesic distances to construct the predefined on-
body node graph on the mean shape of SMPL model as
shown in Figure 2(a)(top). The on-body nodes are inher-
ently bound to skeleton joints in the SMPL model. Outer
surface regions that are close to the inner body are bound to
the on-body node graph. Deformations of regions far from
the body cannot be accurately represented with the on-body
graph. Hence, we additionally sample far-body nodes with
a radius of δ = 5cm on the newly fused far-body geometry.
A vertex is labeled as far-body when it is located further
than 1.4× δcm from its nearest on-body node, which helps
to make sure the sampling scheme is robust against depth
noise and tracking failures. The double node graph is shown
in Figure 2(d)(bottom).

3.2 Inner Body Model: SMPL
SMPL [21] is an efficient linear body model with N = 6890
vertices. SMPL incorporates a skeleton with K = 24 joints.
Each joint has 3 rotational Degrees of Freedom (DoF). In-
cluding the global translation of the root joint, there are
3 × 24 + 3 = 75 pose parameters. Before posing, the body
model T̄ deforms according to shape parameters β and pose
parameters θ to accommodate for different identities and
non-rigid pose dependent deformations. Mathematically,
the body shape T (β,θ) is morphed according to

T (β,θ) = T̄ +Bs(β) +Bp(θ) (1)

where Bs(β) and Bp(θ) are vectors of vertex offsets, rep-
resenting shape blendshapes and pose blendshapes respec-
tively. The posed body model M(β,θ) is formulated as

M(β,θ) = W (T (β,θ), J(β),θ,W) (2)

where W (·) is a general blend skinning function that takes
the modified body shape T (β,θ), pose parameters θ, joint
locations J(β) and skinning weightsW , and returns posed
vertices. Since all parameters were learned from data, the
model produces very realistic shapes in different poses. We
use the open sourced SMPL model with 10 shape blend-
shapes. See [21] for more details.v

Fig. 2. (a) Initialization of the on-body node graph. (b,c,d) Evaluation of
the double node graph. The figure shows the geometry results and live
node graph of (b) traditional free-form sampled node graph (red), (c) on-
body node graph (green) only and (d) double node graph (with far-body
nodes in blue). Note that we render the inner surface of the geometry in
gray in (c)(top).

3.3 Initialization
During capture, we assume a fixed camera position and
treat camera movement as global scene rigid motion. In the
initialization step, we require the performer to start with a
rough A-pose. For the first frame, we initialize the TSDF in
the canonical volume by projecting the depth map into the
volume. Then we use the proposed inner body optimization
method (Section 5.2) to estimate initial shape parameters β0

and pose parameters θ0 of the parametric body model. After
that, we initialize the double node graph using the on-body
node graph and initial pose and shape as shown in Figure
2(a)(bottom). We extract a triangle mesh from the volume
using Marching Cube algorithm [60] and sample additional
far-body nodes. These nodes are used to parameterize non-
rigid deformations far from inner body shape.

3.4 Main Pipeline
The main challenge to adopt SMPL in our pipeline is that
initially the incomplete outer surface leads to difficult model
fitting. Our solution is to continuously update the shape
and pose in the canonical frame when more geometry is
fused. Therefore, we propose a pipeline that executes joint
motion tracking, outer-layer geometry fusion and inner body
optimization sequentially (Figure 3). We briefly introduce
each component of the pipeline below:
Joint Motion Tracking Given the current estimated param-
eters of body shape, we jointly optimize live body pose
and the non-rigid deformations defined by the double node
graph (Section 4). For the on-body nodes, we constrain the
non-rigid deformations of them to follow skeletal motion.
The far-body nodes are also optimized in the process but
are not constrained by the skeleton.
Outer-Layer Geometry Fusion Similar to previous
work [14], we non-rigidly integrate depth observation of
multiple frames in the canonical volume (Section 5.1). We
also explicitly detect collided voxels to avoid erroneously
fused geometry [16].
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Fig. 3. The pipeline of our system. We first initialize the system using the first depth frame (Section 3.3). Then for each frame, we sequentially
perform the next 3 steps: joint motion tracking ( Section 4), outer-layer geometry fusion (Section 5.1) and inner body optimization (Section 5.2).

Inner Body Optimization After outer-layer geometry fu-
sion, the surface of the canonical model gets more complete.
We directly optimize the body shape and pose by using
the updated TSDF in the canonical volume and the live
depth input to generate more accurate inner body shape
reconstruction results very efficiently (Section 5.2).

4 JOINT MOTION TRACKING

There are two parameterizations in our motion tracking
component, skeletal motion and non-rigid node deforma-
tions. Similar to the previous work [18], we adopt a bind-
ing term that constrains both motions to be consistent.
Different from [18], we only enforce the binding term on
on-body nodes to penalize non-articulated motion on on-
body nodes. In contrast, far-body nodes have independent
non-rigid deformations which are regularized to move like
other nodes in the same graph structure. Besides geometric
regularization, we also follow previous work [33] to use a
statistic pose prior to prevent unnatural poses. The energy
of joint optimization is then

Emot = λdataEdata + λbindEbind + λregEreg + λpriEpri, (3)

where Edata, Ebind, Ereg and Eprior are energies of data,
binding, regularization and pose prior term respectively.
Data Term The data term measures the fit between the
reconstructed double-layer surface and the depth map:

Edata =
∑

(vc,u)∈P

τ1(vc)ψ(ñT
vc(ṽc − u))+

(τ2(vc) + τ3(vc))ψ(n̂T
vc(v̂c − u)),

(4)

where P is the correspondence set, ψ(t) = t2/(2(1 + t2))
is the robust Geman-McClure penalty function, and we ap-
proximate the t in the denominator as the initial data energy
in each ICP step for simplicity. (vc,u) is a correspondence
pair, u is a sampled point on the depth map whose closest
point vc can be on either the inner body shape or fused outer
surface, including the near-body surface (surface around the
on-body node graph) and far-body surface (surface around

the far-body node graph). Specifically, we use all the fused
outer surface as candidates for reconstructing the non-rigid
tracking data terms and use both the inner body shape and
the near-body surface to reconstruct the skeleton tracking
data terms. τ1(vc), τ2(vc) and τ3(vc) are correspondence
indicator functions: τ1(vc) equals 1 only if vc is on the
fused outer surface; τ2(vc) equals 1 when vc is on the
inner body shape; τ3(vc) equals 1 when vc is on the near-
body surface. Correspondences on the inner body shape
enable fast and robust skeleton tracking when τ2(vc) = 1,
while correspondences on the fused outer surface provide
more accurate skeleton alignment and non-rigid registration
results when τ1(vc) = 1 and τ3(vc) = 1. ṽc and ñvc are the
vertex position and normal warped by its knn-nodes using
dual quaternion blending and defined as

T(vc) = SE3(
∑

k∈N (vc)

ω(k, vc)dqk), (5)

where dqj is the dual quaternion of jth node; SE3(·) maps
a dual quaternion to SE(3) space; N (vc) represents a set of
node neighbors of vc; ω(k, vc) = exp(−‖vc − xk‖22/(2r2

k))
is the influence weight of the kth node xk to vc; we set
the influence radius rk = 0.075m for all nodes. v̂c and n̂vc

are the vertex position and its normal skinned by skeleton
motion using linear blend skinning (LBS) and defined as

G(vc) =
∑
i∈B

wi,vc Gi,

Gi =
∏
k∈Ki

exp(θk ξ̂k),
(6)

where B is index set of bones; Gi is the cascaded rigid
transformation of ith bone; wi,vc is the skinning weight
associated with ith bone and point vc;Ki is parent indices of
ith bone in the backward kinematic chain; exp(θk ξ̂k) is the
exponential map of the twist associated with kth bone. Note
that the skinning weights of vc is given by the weighted
average of the skinning weights of its knn-nodes.

For each u on the depth map, we search for two types of
correspondences on our double layer surface: vt on the body
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shape and vs on the fused surface. We choose the one that
maximizes the following metric based on Euclidean distance
and normal affinity

c = argmax
i∈{t,s}

((
1− ‖vi − u‖2

δmax

)2

+ µ ñT
vinu

)
, (7)

where we choose µ = 0.2; we set δmax = 0.1m as the
maximum radius used to search correspondences. We adopt
two strategies for correspondence searching. To find corre-
spondences between the depth map and the fused surface,
we project the fused surface to 2D and then find correspon-
dences within a local search window. For correspondences
between the depth map and the body shape, we first find the
nearest on-body node and then search for the nearest vertex
around it. We eliminate the correspondences with distance
bigger than δmax. These two methods are efficient for real-
time performance and avoid building complex space parti-
tioning data structure on GPU.
Binding Term The binding term attaches on-body nodes
to their nearest bones and helps to produce articulated
deformations on the body. It is defined as

Ebind =
∑
i∈Ls

‖Tixi − x̂i‖22, (8)

where Ls is the index set of on-body nodes. x̂i is the node
position skinned by LBS as defined in Equation 6.
Regularization Term The graph regularization is defined
on all of the graph edges. This term is used to produce
locally as-rigid-as-possible deformations. For on-body node
graph, we decrease the effects of this regularization around
joint regions by comparing the skinning weight vector of
neighboring nodes as in [18]. This term is then defined as

Ereg =
∑
i

∑
j∈N (i)

(1− ρ(‖Wi−Wj‖22))‖Tixj −Tjxj‖22 (9)

where Ti and Tj are transformation associated with ith and
jth nodes; Wi and Wj are skinning weight vectors of these
two nodes respectively; ρ(·) is the huber loss function with
threshold 0.5. Around joint regions, if two neighbor nodes
are on different body parts, the difference of the skinning
weight vectors is large, and thus ρ(·) will decrease the effect
of the regularization. This will help to produce articulated
deformations of on-body node graph. For far-body node
graph, we construct its regularization term similar to [14].
Pose Prior Term Similar to [33], we include a pose prior
penalizing the unnatural poses. It is defined as

Eprior = − log
(∑

j

ωjN(θ;µj , δj)
)
. (10)

This is formulated as a Gaussian Mixture Model (GMM),
where ωj , µj and δj is the mixture weight, the mean and the
variance of jth Gaussian model.

We solve Equation 3 using Iterative Closest Point (ICP)
method. We first construct the correspondence set P based
on the latest motion, then solve the generated non-linear
least squares problem using Gauss-Newton method. We
use twist to represent the rigid transformations of both
the joint and node. Within each iteration of Gauss-Newton
method, the rigid transformations are approximated by one-
order Taylor expansion around the latest transformation.

Fig. 4. Illustration of inner body optimization. (a) Skeleton embedding
results before and after optimization. (b) Overlay of the body shape and
outer surface before and after optimization.

The resulting linear system is then solved by a custom
designed highly efficient preconditioned conjugate gradient
(PCG) solver on GPU as in [16] and [8].

5 DOUBLE-LAYER SURFACE RECONSTRUCTION

5.1 Outer-layer Geometry Fusion
Similar to the previous non-rigid fusion works [14], [15] and
[16], we integrate the depth information into a canonical
volume for reconstructing the outer surface. First, the voxels
in the canonical volume are warped to live frame according
to the current non-rigid warp field. Then, we calculate the
PSDF values for the valid voxels and then update their TSDF
values. We follow the work in [16] to cope with collided
voxels in live frame to prevent erroneous fusion results
caused by voxel collisions. We also constraint the fusion to
those voxels that are within δ distance from any nodes.
Dynamic Detail Deformation One of the drawbacks of pre-
vious fusion-based methods is that they fail to reconstruct
dynamic geometric details exhibited in the input depth se-
quence (e.g., the dynamic wrinkles of cloth). Classical TSDF
fusion methods proposed in KinectFusion [61] and Dynam-
icFusion [14] fuse all the depth frames using a relatively
uniform integration weight to complete the surface and fil-
ter depth noise. This is an especially useful scheme for loop
closure reconstruction since we can substantially decrease
the accumulated tracking error by registering the fused
(denoised) surface model to the noisy depth input (frame-to-
model). By contrast, if the registration is performed between
two continuous noisy depth frames, the tracking and loop
closure performence of such systems will be severely de-
graded due to the incorporated depth noise as shown in Fig-
ure 8 of [61]. However, fusing all the depth frames together
with a relatively uniform integration weight considerably
smooths the dynamic geometric details, as shown in Figure
5(e). Moreover, although we can obtain dynamic geometric
details of the cloth by simply assigning a higher integration
weight to the current depth frame, the depth noise will also
be substantially incorporated into the fusion and tracking
steps, thus degrading system performance, especially the
loop closure performance, as shown in Figure 5(f) (the left
arm of the subject is not faithfully loop closed and is much
thinner than other results). Other than that, the uniformly
sampled sparse node graph used in recent real-time non-
rigid reconstruction systems has limited freedom to describe
the detailed non-rigid deformation of the cloth under the
real-time budget.

To reconstruct vivid dynamic details while maintaining
robust loop closure performance, we create a partial fusion
volume that integrates only the lastest p depth frames. In
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each frame, the “super depth” map is generated by rendering
the partial fused geometry, which is extracted from the
partial fusion volume, as a vertex map. The map contains
similar abundant dynamic geometric details as in a single
depth frame but has much less noise. These noiseless details
are then transferred onto the live surface through dynamic
detail deformation, which deforms the live surface to align
with the extracted super depth map. Note that the proposed
dynamic detail deformation method is mainly used to re-
cover those dynamic surface details that can be fused on the
“super depth” but were smoothed out on the fully-fused-
surface (which also means those detailed deformations that
cannot be well described by the sparsely sampled node
graph). Thus, this method will not substantially improve
the surface tracking accuracy for the relatively rigid surfaces
such as tight cloth and body skin. Moreover, although
previous method [34] has evaluated the effectiveness of
using the dynamic detailed surfaces under different poses
for optimizing accurate body shapes, they still need to use
a bundle optimization strategy after capturing the whole
sequence and thus cannot achieve real-time performance.
In our system, we only use the TSDF volume (but not the
detailed surfaces after dynamic detail deformation) and the
live depth input for inner body optimization for achieving
real-time performance as explained in Section 5.2. To main-
tain the real-time performance of our system, our dynamic
detail deformation is designed to avoid solving a large-scale
nonlinear optimization problem, as in [10]. Instead, we
stretch each vertex vl on the live surface to its corresponding
vertex vs on the super depth map in an iterative and
incremental manner. Specifically, in iteration t (t > 1), we
have vt

l = vt−1
l +s · (w∆vt

l + 1−w
|N(vl)|Σvni

∈N(vl)∆vt
ni

), where
N(vl) denotes the neighbor vertex set of vl, |N(vl)| is the
number of the neighbors, vni

is the ith neighbor of vl, s,
which is set to 0.1, controls the deformation step in each
iteration, w is the spatial smoothness weight, which is set
to 0.6, and ∆vt

l = vs − vt−1
l is the vector from vt−1

l to vs

and ∆vt
ni

is the vector from vt−1
ni

to its corresponding super
depth vertex. We search for the correspondences using the
projective block searching scheme from [16] and perform 20
iterations in total. Note that for vertices with no correspond-
ing super depth vertex, we simply set their correspondences
as themselves. This incremental iterative stretching scheme
is effective in our system since the source mesh (live surface)
and the target mesh (super depth) are quite close spatially.
As shown in Figure 5(d) and Figure 15, by using the
proposed dynamic detail deformation approach, we can ob-
tain accurate dynamic surface reconstruction results while
maintaining robust capture performance.

5.2 Inner Body Optimization

Due to the limited observation of the initial frame and the A-
pose required for system initialization, the initialized shape
and pose parameters (β0,θ0) in the canonical volume may
not accurately explain the later depth observations as shown
in the left part of Figure 4(a) and (b). After the surface fusion
step, we may have an updated outer surface in the canonical
volume with more complete geometry. On the one hand,
the updated geometry in the canonical volume can provide
much more information under the initial A-pose to optimize
the embedded body model. On the other hand, live input

Fig. 5. Illustration of partial geometry fusion and dynamic detail de-
formation. (a,b) Color reference and depth input with different poses;
the wrinkles on the cloth are significantly different from each other.
(c) Partial fused geometry, which contains plausible dynamic geometric
details and much less noise than the depth input. (d) Live geometry
after dynamic detail deformation; the dynamic cloth wrinkles are faith-
fully reconstructed. (e) Live geometry without detailed deformation [22];
although the relatively static geometry details on the face and trousers
are reconstructed, the dynamic cloth wrinkles cannot be reconstructed
faithfully. (f) Live geometry reconstruction results by implementing a
larger current integration weight (8) in the TSDF fusion step. Note that
the left arm of the subject is not faithfully reconstructed due to the
deteriorated loop closure performance.

depth frames provide additional information on the inner
body shape under different poses. Therefore, utilizing both
the evolving outer surface and the live depth observations
of different poses can substantially improve the accuracy
of the inner body reconstruction and its canonical volume
embedding. We propose a novel algorithm that can effi-
ciently optimize the shape parameters β and canonical pose
parameters θ of the parametric body model jointly by means
of the updated TSDF in the canonical volume and the live
depth input in every frame. The formulation of the energy
is then

Eshape = Esdata + Esreg + Epri, (11)

where Esdata is a shape optimization data term based on the
continuously updated canonical volume and the live depth
input and Esreg is a temporal constraint term that makes
the new shape and canonical pose parameters consistent
with the previous ones. Epri is the same as in Equation
3 to prevent unnatural canonical poses. The novel shape
optimization data term is defined as

Esdata = Evolume + Edepth, (12)

where Evolume measures the misalignment between the
canonical body and the TSDF volume and Edepth measures
the misalignment between the live body and the live depth
input. An illustration of Evolume is shown in Figure 6. Note
that although a complete canonical outer surface in the A-
pose can provide a good constraint for body optimization,
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Fig. 6. Illustration of inner body optimization for the volume data term.
(a) Canonical body model and a slice of the TSDF volume, with color-
coded normalized TSDF value mapping from [-1, 1] to the HSV color
space. Gray color represents regions without observations. (b,c,d) Tem-
poral inner body optimization results around the waist. The inner body
becomes increasingly accurate as more regions in the canonical volume
are observed.

Fig. 7. Evaluation of the live-depth-based energy in the body optimiza-
tion step. (a,b) Canonical model and inner body skeleton overlay (the
skeleton embedding of the canonical model) without/with live-depth-
based energy. (c,d) Live body and live depth silhouette (green) overlay
without/with live-depth-based energy. (e,f) Live model and depth silhou-
ette (green) overlay without/with live-depth-based energy.

the simple A-pose is not sufficient for accurate body shape
optimization, especially for accurate body/skeleton embed-
ding in the canonical volume. Therefore, we incorporate live
depth input, which contains visual cues extracted from vari-
ous poses, to construct a new energy term for accurate shape
optimization. Specifically, we first calculate a 2D distance
transform map for the live depth silhouette and then use the
map to construct a silhouette term for shape optimization.
Then, we calculate the 3D point-to-plane errors between
the live body model and the valid live depth point cloud
to obtain better 3D fitting results. Figure 7 shows that by
incorporating the live-depth-based inner body optimization
energy, we can obtain more accurate body shape reconstruc-
tion and skeleton embedding in the canonical frame (b,d)
and, thus, more accurate large deformation results around
the left knee (f). The quantitative evaluation of the live-
depth-based energy term is shown in Figure 14. Note that
in the surface tracking step, the fitting between the fused
surface and the depth input mainly determines the non-
rigid tracking accuracy, and only using the TSDF volume for
body optimization will also generate robust surface tracking
results as demonstrated in the preliminary version. How-
ever, for specific regions (such as the large bending regions
around joints), a more accurate body shape (skeleton em-
bedding) guarantees more accurate pose tracking results as
shown in Figure 7 and the supplementary video. Moreover,
for those cases that we cannot fuse a complete TSDF volume
for body shape optimization (e.g., the subject never turns
around in the whole sequence), the incorporation of the live
depth energy will improve the surface tracking accuracy
by estimating a more accurate body shape as shown in
Figure 16 and Table 1.

The inner body optimization loss funciton is defined as

Evolume(β,θ) =
∑
v̄∈T̄

η · ψ(D(W (T (v̄;β,θ); J(β),θ))),

(13)
which is used to optimize canonical volume body embed-
ding (body shape and canonical body pose) jointly. Where
ψ(·) is the Geman-McClure penalty function as in Equation
4, D(·) is a bilinear sampling function that takes a point in
the TSDF volume and returns the interpolated TSDF value.
Note that D(·) returns valid distance values only when
the knn-nodes of the given point are all on-body nodes;
otherwise D(·) returns 0. This prevents the body shape
from incorrectly fitting exterior objects, e.g., the backpack
a performer is wearing. η is a nonsymmetric weight for
general capture: for all the sequences, we set η = 1.5 when
D(·) > 0 (which means the inner body vertex is located
outside the outer surface) and η = 1.0 when D(·) <= 0. By
using this nonsymmetric weight, we are able to obtain more
plausible inner body optimization results when people wear
casual clothing. v = T (v̄;β,θ) modifies v̄ by shape blend
shape and canonical body pose θ; W (v; J(β,θ),θ) deforms
v using linear blend skinning.

The live-depth-based shape optimization energy is de-
fined as

Edepth(β) =
∑
v̄∈T̄

‖DT(P(ṽ))‖22 + ‖dnT (ṽ − dv)‖22, (14)

which is used to optimize body shape according to the
live depth input and the tracked body pose. Here, ṽ =
T (v̄;β, θ̃) modifies v̄ by shape blending and live pose θ̃,
ũ = P(ṽ) projects live body vertex ṽ onto the live depth
image plane and acquires its 2D pixel coordinates ũ. DT(ũ)
is a sampling function that returns the distance transform
value at ũ on the distance transform map using bilinear
interpolation. dv and dn are the vertex position and normal
of the live depth input, respectively.

The temporal regularization is defined as

Esreg(β,θ,β′,θ′) = γ1‖β − β′‖22 + γ2‖θ − θ′‖22. (15)

This term prevents the optimized shape and pose parame-
ters (β,θ) from deviating the ones (β′,θ′) of the previous
frame.

Note that T (v̄;β,θ) includes both the pose and shape
parameters, which makes W (v; J(β,θ),θ) a non-linear
function. We find that generally the pose blend shape Bp(θ)
in T (v̄;β,θ) contributes much less to the modified body
shape compared with the shape blend shape. Therefore we
ignore the pose blend shape in T (v̄;β,θ), and the resulting
skinning formulation W (T (v̄;β); J(β,θ),θ) becomes a lin-
ear function of (β,θ). This will generate a better energy
landscape for the sampling based energy (Equation 13
and Equation 14) and make the convergence faster. Then
we solve the resulting energy using the same GPU-based
Gauss-Newton solver as in Section 4. At last, we update
the body shape and pose that embedded into the TSDF
volume and update the non-rigid and skeleton motion field.
As shown in Figure 4(b), the reconstructed shape and
pose (skeleton embedding) get more accurate by using the
proposed inner body optimization method.
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Fig. 8. Example results reconstructed by our system. Our system is capable of reconstructing different types of cloth and various body shapes.

Fig. 9. Sequential reconstruction results on two sequences. The first row is the color reference (without background), and reconstruction results are
presented in the last two rows. Our system is able to capture fast and complicated human motion as well as detailed surface geometries.

6 RESULTS

In this section, we first report the performance and the
main parameters of the system. Then we compare with
current state-of-the-art methods qualitatively and quanti-
tatively. We also evaluate each of our main contributions.
In Figure 8, we demonstrate the reconstruction results
of different subjects. Note the various shapes, challenging
motion and different types of cloth of the loop closed model
that we can reconstruct. In Figure 9, we demonstrate the
sequential reconstruction results of two subjects. Note the
complicated poses and detailed clothing geometries that we
reconstructed.

6.1 Performance

DoubleFusion runs in real-time (running at 33ms per frame).
The entire pipeline is implemented on one NVIDIA TITAN
Xp GPU. Executing 6 Gauss-Newton iterations, the joint
motion tracking takes 21.4 ms. The geometric fusion takes
6.1 ms and inner body optimization takes 3.4 ms. Prior to
the joint motion tracking, we perform preprocessing for the

input depth frame, which includes bilateral filtering, floor
removal and distance transform calculation. After inner
body optimization, a triangulated mesh is extracted, non-
rigidly transformed into the live camera coordinates (using
non-rigid warping and the proposed dynamic detail defor-
mation approach) and rendered on the screen. The two parts
above run asynchronously (in another CUDA stream) with
the main pipeline, and the actural cost is less than 1 ms. For
all of our experiments, we choose λdata = 1.0, λbind = 1.0,
λreg = 5.0, λpri = 0.01 and p = 8. For each vertex, we use
its 4 nearest neighbors for warping; for each node, we use
its 8 nearest neighbors to construct the node graph. The size
of the voxel is set to 4 mm in each dimension.

6.2 Evaluation
Double Node Graph We evaluate the proposed double
node graph in Figure 2. The standard node graph construc-
tion scheme [29] uniformly samples all the nodes on the
fused outer surface. The lack of semantic information results
in wrong connections (connection between two legs) and
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Fig. 10. Evaluation of joint motion tracking. (a) Reference color image.
(b) Results using only correspondences on the body for skeleton track-
ing, without non-rigid registration. (c) Searching correspondences on
both the body and fused surface for skeleton tracking, without non-rigid
registration. (d) Using full energy terms.

Fig. 11. Evaluation of on-body correspondences. The first row are ref-
erence color images and depth inputs. The second and third row are
sequential double-layer surface reconstruction results with and without
on-body correspondences, respectively.

erroneous fusion results as shown in Figure 2(b). Using the
on-body node graph alone is limited to capturing relatively
tight clothing (e.g. the incomplete geometry of the backpack
in Figure 2(c)) since it is out of the control area of on-
body node graph. By using the proposed double node graph
(Figure 2(d)), we can get clean and complete results.
Joint motion tracking In Figure 10, we evaluate different
components of the joint motion tracking step qualitatively.
We eliminate non-rigid registration in Figure 10(b) and
(c). In Figure 10(b), we only use correspondences on the
body shape by setting τ1(vc) ≡ 0, τ3(vc) ≡ 0 in Equation
4. It shows that without detailed surface and non-rigid
registration, although an approximate pose can be tracked,
the fused surface is noisy and erroneous; In Figure 10(c), we
use correspondences on both body shape and fused surface
by setting τ1(vc) ≡ 0, the pose and fused surface get better
but still contain artifacts. Only using all the energy terms can
we get accurate motion and fusion reconstruction results as
shown in Figure 10(d). We also evaluate the on-body corre-
spondences separately in Figure 11, in which the performer
starts with a rough A-pose and then turning around while
waving his arms (please also refer to the supplementary
video for more detailed evaluation). As shown in Figure
11, using only the fused surface for tracking will quickly
lead to tracking failures when the left arm reappears with
significant occluded motion (the 3rd row in the figure), and

Fig. 12. Evaluation of inner body optimization according to non-
rigid tracking accuracy. (a) Average tracking error per frame. (b) Re-
constructed shape-mesh overlap with optimization. (c) Reconstructed
shape-mesh overlap without optimization.

Fig. 13. Per-vertex error of the reconstructed body shapes.

this is due to the lack of surface geometry for depth fitting.
Using both the outer surface and inner body for tracking
generates more plausible and complete results, as shown
in the 2nd row. This evaluation also demonstrates that our
method enables more robust human body reconstruction
under unconstrained motion during self-turning-around.
Inner body optimization We evaluate inner body opti-
mization both qualitatively and quantitatively. To evaluate
the algorithm according to non-rigid tracking accuracy, in
Figure 12, we use a public 4D sequence. We first render a
single view depth sequence and then perform reconstruc-
tion using our system with/without optimization. The per-
frame tracking error is calculated by averaging the point
to plane error from the fused surface to the ground truth.
We get better non-rigid tracking accuracy by using the body
optimization as shown in Figure 12(a), and (b-c) demon-
strates the reconstructed shape-mesh overlay with/without
optimization. In Figure 13 and Figure 14, we evaluate
the accuracy of the reconstructed body shape. We first ob-
tain the ground truth undressed shape using laser scanner.
Then we capture the same subject with clothing using our
system. As shown in Figure 13, our reconstructed body
shapes are plausible even though the subjects are dressed.
Figure 14 shows the average error of shape reconstruction
along the sequence with and without using the live-depth-
based energy. Note that with the live-depth-based energy,
we not only obtain a more accurate body shape at the

Fig. 14. Evaluation of the inner body optimization method and the live
depth energy according to the shape reconstruction accuracy.
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Fig. 15. Quantitative evaluation of dynamic detail deformation according
to the surface reconstruction accuracy. The numbers-in-brackets in the
legend represent current integration weights used in the TSDF fusion
step. Note that all the results were generated by incorporating the live
depth energy for inner body optimization.

TABLE 1
Quantitative comparison of the tracking accuracy with BodyFusion [18]

and the preliminary version of DoubleFusion [22] using the vicon
dataset. Note that we use the sequence ”szq” in the dataset because it

starts with a rough A-pose.

Method [18] [22] DoubleFusion(Jrnl)
Maximum (mm) 57.4 44.6 41.4
Average (mm) 23.7 22.5 20.8

beginning (since the initial A-pose depth silhouette also
contains sufficient shape information), but also reconstruct
a more accurate body shape in the end. We also quali-
tatively evaluate the proposed live-depth-based energy of
inner body optimization in Figure 7. As shown in the
figure, more accurate body shape (canonical body/skeleton
embedding) (b), skeleton tracking (d) and large deformation
results can be reconstructed by means of the live-depth-
based energy. Please refer to the supplementary video for
qualitative evaluations on more sequences.
Dynamic Detail Deformation The quantitative evaluation
of the proposed dynamic detail deformation approach is
shown in Figure 15. We first render the ground truth depth
sequence (which contains sufficient dynamic geometric de-
tails) from the Buff Dataset [34], which comprises high
quality 4D performances of 5 clothed people and was cap-
tured by a commertial multi-view 3D reconstruction system.
The 4D sequences in the Buff Dataset captured sufficient
dynamic geometric details on the cloth, which is ideal for the
quantitative evaluation of the dynamic detail reconstruciton
methods. Then we add synthetic noise on the ground truth
depth sequence according to the Kinect noise model in
[62]and use the noise-added depth sequence as the system
input for the evaluation. As shown in Figure 15, the recon-
struction accuracy of the dynamic details is improved by
using the proposed dynamic detail deformation approach.
Moreover, by simply increasing current integration weight
in the TSDF fusion step, the reconstruction accuracy is even
worse since the depth noise fused on the surface will dete-
riorate the tracking and fusion accuracy. Please refer to the
supplementary video for the more detailed visualization.

6.3 Comparison

Quantitative Comparison We compare our surface track-
ing quantitatively with BodyFusion [18] and DoubleFu-

Fig. 16. Comparison of the tracking accuracy on the sequence ”szq” in
BodyFusion [18] vicon dateset.

sion(Pre) [22] (the preliminary version) using the public
vicon dataset [18] in Table 1 and Figure 16. Note that
compared with the preliminary version [22], the extended
algorithm (benefiting from the more accurate body shape)
obtains smaller maximum error and average error.
Qualitative Comparisons We qualitatively compare our
method with 4 state-of-the-art single-view RGBD real-time
non-rigid reconstruction methods [14], [18], [19], [20] in
Figure 17. The approachs of [14] and [20] do not use any
specific motion priors and are thus unable to handle very
fast motion. Specifically, [14] tends to integrate erroneous
surfaces when tracking fails while [20] loses the fused
geometry around regions of tracking failure (e.g., hands and
arms). [18] and [19] both incorporate articulated motion
priors for non-rigid motion tracking. The difference between
them is that [18] is focused on human reconstruction while
[19] utilizes articulate motion priors for general objects.
The generation of motion segmentation in [19] relies on
reliable non-rigid motion tracking, so tracking fast motion
is difficult, especially at the beginning. Moreover, the lack of
body shape priors leads to deteriorated tracking and fusion
performance in [18]. Note that our system still needs the
subject to start capture with a rough A-pose, which is not
a requisite of the other methods. Incorporating skeleton
detection methods into the pipeline may overcome this
limitation, as in [18], and we leave this step to future work.
Figure 17 shows that benefiting from the proposed double-

surface representation and joint motion tracking algorithm,
our method achieves more robust tracking and loop closure
performance than the other methods for human perfor-
mance capture. Please see the supplementary video for more
details.
Comparison against Learning-based Methods Most cur-
rent methods for body shape and pose reconstruction, in-
cluding [51], [52], [53], [54], [55] and [56], are based
on machine learning techniques. These methods can infer
plausible body shape and pose information from a sin-
gle color image or silhouettes, which is convenient and
promising. Among these methods, [51] is strong on pose
reconstruction, while [53] is the state-of-the-art on shape
reconstruction, benefiting from the proposed volumetric
learning method. We qualitatively compare both of these
techniques with our method for pose and shape reconstruc-
tion in Figure 18. Moreover, we quantitatively compare our
method with [53] on shape reconstruction.

As shown in Figure 18, without incorporating tem-
poral information into the inference network, both [51]
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Fig. 17. Qualitative comparison with state-of-the-art real-time methods. The left column shows the comparison with [14] and [20] on the sequence
”Moonwalk”, in which the first row is the color reference and the second to fourth rows are the sequential reconstruction results of our method, the
method in [14] and the method in [20], respectively. The right column shows the comparison with [18] and [19] on the sequence ”CVPR Live
Demo 1”, in which the first row is the color reference and the second to fourth rows are the sequential reconstruction results of our method, the
method in [18] and the method in [19], respectively.

and [53] produce temporally incoherent pose and shape
reconstruction results. Moreover, since these methods do not
consider depth information, they cannot reconstruct accu-
rate 3D poses, which degrades their shape reconstruction
performance. By contrast, our method generates temporally
smooth and accurate shapes and poses even under challeng-
ing motion conditions.

For the quantitative comparison of shape reconstruction,
we acquired the ground truth body shape by laser-scanning
a naked body, as shown in Figure 13. Note that although
[53] is designed for using only a single rgb image as input,
we also test it on the image sequence for a more compre-
hensive comparison. Specifically, we first apply [53] to the
sequence frame by frame and then average the inferred
shape parameters from the whole sequence to obtain the
final shape. To eliminate the impact of failure inferences
for [53], we removed the frames of challenging poses when
performing sequence-based shape reconstruction. The shape
reconstruction accuracy is presented in Table 2. Our method
achieves the highest accuracy because of the volumetric
geometry fusion and accurate motion tracking performance.
Table 2 also shows that our method can generate more accu-
rate shapes and poses than [53] when only the initial A-pose
depth frame is available. Moreover, when using the whole
sequence for shape reconstruction, [53] achieves slightly
worse accuracy than using only a single image because of
the temporally incoherent shape reconstruction results and
the inaccurate 3D poses. The results also demonstrate that
shape inference under the initial front-facing A-pose is more
accurate than that under other (especially side-facing) poses.

7 APPLICATIONS

Our system can be used in many areas, including perfor-
mance/motion capture, holoportation, 3D virtual try-on,
VR/AR and gaming.

7.1 Body Measurement

One unique application of our system is convenient body
measurement. Compared with traditional body measure-
ment methods (e.g., measuring the body manually), avail-
able 3D scanner products (e.g., [63] and [64]) provide
substantial information for accurate 3D body measurement.
However, these products still require the subject to stand
still on a turntable for approximately 15-30 seconds for data
capture and several minutes for 3D body reconstruction
and measurement. These requirements make these methods
inconvenient and difficult for the consumer. Our system
achieves convenient body measurement in real-time: the
subject simply needs to turn around in front of a depth
camera with a rough A-pose. Our method can perform body
measurement either on the fused surface or on the opti-
mized parametric (SMPL) model. Specifically, we predefine
cross sections on different body parts of the SMPL model,
where each contour produced by an intersection is shown
in Figure 19. We measure circumferences of different body
parts by calculating lengths of the contours. Additionally,
we use the predefined cross sections on the SMPL model to
cut the fused surface when performing body measurements,
which is reasonable since the fitting between the SMPL
and the fused surface has been optimized via the proposed
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TABLE 2
Quantitative results of body shape reconstruction on the sequence ”Moonwalk” (frames 260 - 500) using our method and the approach of [53].

Ours with single depth Ours with depth sequence [53] with single rgb [53] with rgb sequence
Maximum Error (m) 0.0864 0.0587 0.1170 0.1433
Average Error (m) 0.0166 0.0092 0.0197 0.0210

Fig. 18. Qualitative comparison with learning-based methods [51] and [53] on sequence ”Kicking” (the selected frames are 330, 1244 and 1339).
The results of [51] are shown on the top left with blue color. The mesh inference results and corresponding SMPL models of [53] are shown with
gray color on the top right and bottom left, respectively. Our SMPL model reconstruction results are shown on the bottom right with orange color.

Fig. 19. Illustration of body measurement on the SMPL model and the
fused surface. The red lines and green lines indicate the positions of
different cross sections predefined on the SMPL model. The two cross
sections shown in the middle are cross sections of the chest on the
optimized SMPL model (top) and the fused surface (bottom).

”inner body optimization method” in Section 5.2. How-
ever, in this specific application, since the subjects all wear
underwear, there is no reason to constrain the optimized
SMPL model to be located inside the fused surface, so we
set η ≡ 1.0 for the volume data term in Equation 13 for
constraining the optimized SMPL model to perfectly align
with the fused surface.

We captured 4 subjects wearing underwear for evalu-
ation. Table 3 compares the body measurement results
of our system with the hand measurement results from
skilled people. The average and maximum error of the
fused-surface measurement are lower than those of the
parametric-body measurement, especially when measuring
the chest and waist. Although the accuracy is not as high
as that of professional measurement machines, this is the
first method that achieves passive self-turning body mea-
surement in real-time using only a single depth camera. The
body measurement accuracy can be improved by combining
bundle adjustment methods and color features into our
pipeline to generate more accurate loop closed 3D body
surfaces.

Fig. 20. Detailed outer surface shape retargeting results. (a) Recon-
structed detailed geometry of a clothed human body. (b-f) Shape re-
targeting results for different body shapes.

7.2 Shape retargeting

Body shape retargeting for 4D sequences is especially useful
when demonstrating subjects under new body shapes and
synthesizing virtual datasets for human body analysis. In
DoubleFusion, joint reconstruction of the outer surface and
inner body shape enables parametric shape retargeting.
Specifically, after obtaining the target shape parameters, we
can generate the target body shape which has the same
mesh topology as the source body shape. Then, we use all
the vertices on the inner body as deformation nodes and
estimate a smooth non-rigid deformation graph that can
deform the source body shape to the target body shape.
Finally, we apply the estimated deformation to the valid
outer surface to generate the shape retargeting results of the
outer surface geometry. Figure 20 demonstrates the shape
retargeting application of our system.

8 LIMITATIONS

The reconstruction of very wide cloth remains challenging,
as shown in Figure 21(a) (the reconstruction results of a long
skirt) for two main reasons. First, free-form large non-rigid
deformations of clothing does not strictly follow the human
body motion prior. Moreover, it is too complicated for
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TABLE 3
Body Measurement Results of 4 Subjects (YT, AL, ZMJ and WLZ). The measured circumferences and the measurement errors of different body

parts are shown in the 1st, 2nd and 3rd subrow for each subject. Where the “Hand”, “SMPL” and “Fused” means measurement results by hand, on
the optimized SMPL model and on the fused surface, respectively. The last two rows show the maximum and average measurement error of the

measurement results on the optimized SMPL model and on the fused surface. The unit is meter(m) for all the results.

Upper arm Lower arm Upper leg Lower leg Chest Waist

YT
Hand

SMPL/error
Fused/error

0.275
0.304/0.029
0.282/0.007

0.235
0.238/0.003
0.256/0.021

0.505
0.547/0.042
0.521/0.016

0.396
0.382/-0.014
0.385/0.011

0.970
0.973/0.003
0.960/0.010

0.803
0.884/0.081
0.832/0.029

AL
Hand

SMPL/error
Fused/error

0.275
0.296/0.021
0.299/0.024

0.220
0.227/0.007
0.251/0.031

0.535
0.554/0.029
0.533/-0.002

0.375
0.378/0.003
0.398/0.023

0.935
0.974/0.039
0.954/0.019

0.870
0.897/0.027
0.896/0.026

ZMJ
Hand

SMPL/error
Fused/error

0.361
0.376/0.015
0.373/0.012

0.290
0.277/-0.012
0.283/-0.007

0.592
0.625/0.033
0.630/0.038

0.447
0.427/-0.020
0.455/0.009

1.165
1.178/0.013
1.180/0.015

1.092
1.131/0.039
1.104/0.012

WLZ
Hand

SMPL/error
Fused/error

0.291
0.314/0.023
0.303/0.012

0.241
0.244/0.003
0.241/0.000

0.570
0.564/-0.006
0.567/-0.003

0.395
0.389/-0.006
0.411/0.016

0.890
0.998/0.108
0.961/0.071

0.860
0.922/0.062
0.908/0.048

SMPL max/avg (L1) 0.029/0.022 0.012/0.006 0.042/0.028 0.020/0.011 0.108/0.041 0.081/0.052
Fused max/avg (L1) 0.024/0.014 0.031/0.015 0.038/0.015 0.023/0.015 0.071/0.029 0.048/0.029

general non-rigid tracking methods to track such large free-
form non-rigid deformation. Note that previous real-time
fusion-based methods and even offline template-based non-
rigid surface tracking methods are also unable to reconstruct
satisfactory deformations under such conditions.

Furthermore, our system tends to overestimate body
size when users wear thick clothes. Utilizing existing data-
driven and learning-based techniques to handle cloth de-
tection and reconstruction may produce better results. In
addition, our system cannot handle geometric separations
of the outer surface, which could be addressed by incor-
porating the key-volume update method from [8] or the
variational-level-set-based method from [20]. Our system
does not handle hair reconstruction very well because of
the low depth quality of the hair regions of current depth
sensors. Using color images as a reference to improve depth
quality or using generative models for 3D hair generation
may produce better results. Due to the lack of observations
around the hands and face under the single-view full-body
setup, we cannot capture detailed hand motion and facial
expressions, which remains a challenging task for single-
view full-body performance capture.

Moreover, our method cannot handle human-object in-
teractions, as illustrated in Figure 21(b)(c). Future work
will explore combining learning-based detection, classifica-
tion and 3D reconstruction methods into our pipeline as
a promising direction to overcome these limitations and
obtain better results. For example, by utilizing [51], we can
initialize our system from any pose and recover our system
from severe tracking failures.

9 CONCLUSION

In this paper, we have demonstrated the first method for
real-time reconstruction of both clothing and inner body
shape from a single depth sensor. By incorporating the
parametric human body model into the traditional single-
view non-rigid RGBD reconstruction pipeline, we achieve
accurate and robust single-view real-time human perfor-
mance capture. More importantly, we have demonstrated
that the free-form fusion-based methods and parametric-
model-based methods can be used together and even benefit

Fig. 21. Limitations: reconstruction results of loose cloth (long skirt)(a),
and geometry separations (removing scarf from body)(b,c).

each other: With the assistance of parametric models, free-
form fusion-based methods achieve more robust fast motion
tracking and surface fusion performance. Furthermore, the
fused detailed surface provides much more accurate ob-
servations for optimizing accurate parametric models. This
idea can be used in other RGBD reconstruction areas, such
as dynamic detailed face reconstruction, hand reconstruc-
tion, animal reconstruction and the reconstruction of other
specific types of objects. On the basis of the proposed
double-layer representation, our system achieves better non-
rigid tracking and surface loop closure performance than
that of state-of-the-art methods. Moreover, the real-time
reconstructed inner body shapes are accurate and plausible.
We believe the robustness and accuracy of our approach will
enable many applications. In conclusion, with DoubleFusion
users can easily digitise themselves.
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